Visible light induced photocatalytic performance of Mn-SnO2@ZnO nanocomposite for high efficient cationic dye degradation

نویسندگان

چکیده

In this work, we have synthesized Mn-doped SnO2@ZnO nanocomposite for photo degradation of Methylene blue and Rhodamine B dyes upon visible light irradiation. The crystal structure, functional group, optical absorption, defect related emission, morphology, purity binding energy state samples were identified by using various analytical tools. structure revealed the rutile tetragonal, hexagonal wurtzite SnO2 ZnO average sizes found in range 23.3 nm to 16.7 samples. absorption peaks shifted higher wavelength side band gap values between 3.52 eV 2.77 which confirm formation hetero-junction composites. field emission scanning electron spectroscopy (FESEM) spherical grain morphology pure composite dispersive spectra (EDS) element mapping confirms X-ray photoelectron (XPS) that composition Mn4+, Sn4+ Zn2+ photocatalytic results clearly indicate has efficiency 98% 92% dyes, respectively is than other present study reveals a low cost highly efficient photo-catalyst works up on irradiation purification waste water from industries.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen doped TiO2 for efficient visible light photocatalytic dye degradation

In this study, Nitrogen doped TiO2 photocatalysts were prepared by the sol gel method and physicochemical properties were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM), photoluminescence, and energy dispersive X-ray spectroscopy (DRS) techniques. The XRD data indicated that the nanoparticles had the same crystals structures as the pure TiO2</su...

متن کامل

Synthesis of nanocomposite based on Semnan natural zeolite for photocatalytic degradation of tetracycline under visible light

This study investigated the photocatalytic behaviors for the nanocomposite of TiO2 P25 and Semnan natural zeolite in the decomposition of tetracycline under visible light in an aqueous solution. The structural features of the composite were investigated by a series of complementary techniques that included X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning elec...

متن کامل

ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.

A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation ...

متن کامل

The Study of Photocatalytic Degradation Mechanism under Visible Light Irradiation on BiOBr/Ag Nanocomposite

Due to the pollution of dyeing and textile industry wastewaters in different colors and the need to remove these pollutants from the wastewaters, it is necessary to study and develop effective and efficient technology solutions required. To remove dye from aqueous solutions, photodegradation is employed as an effectively simple way. Thus, the BiOBr photocatalyst was chemically made by synthesis...

متن کامل

Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite

In this study, pure ZnO, CeO2 and ZnO/CeO2 nanocomposites were synthesized using a thermal decomposition method and subsequently characterized using different standard techniques. High-resolution X-ray photoelectron spectroscopy measurements confirmed the oxidation states and presence of Zn(2+), Ce(4+), Ce(3+) and different bonded oxygen species in the nanocomposites. The prepared pure ZnO and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Materials Science: Materials in Electronics

سال: 2021

ISSN: ['1573-482X', '0957-4522']

DOI: https://doi.org/10.1007/s10854-021-06692-x